Search results for "Space of rapidly decreasing functions"
showing 2 items of 2 documents
Composition operators on the Schwartz space
2018
[EN] We study composition operators on the Schwartz space of rapidly decreasing functions. We prove that such a composition operator is never a compact operator and we obtain necessary or sufficient conditions for the range of the composition operator to be closed. These conditions are expressed in terms of multipliers for the Schwartz class and the closed range property of the corresponding operator considered in the space of smooth functions.
Dynamics and spectra of composition operators on the Schwartz space
2017
[EN] In this paper we study the dynamics of the composition operators defined in the Schwartz space of rapidly decreasing functions. We prove that such an operator is never supercyclic and, for monotonic symbols, it is power bounded only in trivial cases. For a polynomial symbol ¿ of degree greater than one we show that the operator is mean ergodic if and only if it is power bounded and this is the case when ¿ has even degree and lacks fixed points. We also discuss the spectrum of composition operators.